## **Earned Schedule in Action**

#### PMI Oklahoma City Chapter 13<sup>th</sup> July 2007

Kym Henderson Immediate Past Education Director PMI Sydney Australia Chapter

Kym.Henderson@froggy.com.au

© Kym Henderson © Walt Lipke



### **Commonwealth of Australia**



Earned Schedule In Action PMI OKC July 2007 v1

- European settlement started on 26<sup>th</sup> Jan 1788
  - British penal colony
- Federation of 6 colonies on 1<sup>st</sup> Jan 1901
  - US style Federation
  - Federal Parliament has
    - House of Representatives
    - Senate (12 Senators per State)
  - Federal Constitution
    - Defines powers between Federal and State Governments
    - No Bill of Rights
- BUT use British Westminster system of Parliamentary democracy
  - Majority Leader in House of Representatives becomes "Prime Minister"
- Population
  - Reached 21 million this year
- Land mass
  - Similar size to contiguous US 48 states

© Kym Henderson © Walt Lipke

2

### **Earned Value Basics**



Time 3

© Kym Henderson © Walt Lipke

### **EVM Schedule Indicators**

• SV & SPI behave erratically for projects behind schedule

- SPI improves and concludes at 1.00 at end of project
- SV improves and concludes at \$0 variance at end of project
- Schedule indicators lose predictive ability nominally over the last third of the project

### **EVM Schedule Indicators**

- Why does this happen?
  - SV = EV PV
  - SPI = EV / PV
- At planned completion PV = BAC
- At actual completion EV = BAC
- When actual completion > planned completion
  - SV = BAC BAC =\$000
  - SPI = BAC / BAC = 1.00

**Regardless of lateness !!** 

### **Introduction to Earned Schedule**

© Kym Henderson © Walt Lipke

### **Importance of Schedule**

"We need to maintain our attention on schedule delivery. Data tells us that since July 2003, real cost increase in projects accounted for less than 3 percent of the total cost growth. ... <u>Therefore, our problem is not cost, it is</u> <u>SCHEDULE</u>."

Dr. Steve Gumley, CEO
 Defence Materiel Organization (Australia)
 Quote taken from DMO Bulletin, July 2006, Issue 61, page 3

#### **Earned Schedule: The Concept** Seminal paper published in 2003 (Lipke)



\$

### **Earned Schedule Metrics**

#### Required measures

- Performance Management Baseline (PMB) the time phased Planned Values (PV) from project start to completion
- Earned Value (EV) the Planned Value which has been "Earned"
- Actual Time (AT) the Actual Time duration from the project beginning to the time at which project status is statused
- All measures available from existing EVM data

### **Earned Schedule Metrics**

### ♦ ES<sub>cum</sub> is the:

Number of completed PV <u>time increments</u> EV exceeds + the fraction of the incomplete PV increment

### • $ES_{cum} = C + I$ where:

C = number of time increments for  $EV \ge PV$ 

$$= (\mathsf{EV} - \mathsf{PV}_{\mathsf{C}}) / (\mathsf{EV}_{\mathsf{C}+1} - \mathsf{PV}_{\mathsf{C}})$$

• ESperiod(n) = EScum(n) - EScum(n-1) =  $\Delta ES_{cum}$ 

#### ♦ ATcum

AT = Actual Time (time now)

• ATperiod(n) = ATcum(n) - ATcum(n-1) =  $\Delta AT_{cum}$  $\Delta AT_{cum}$  is normally equal to 1

### **Earned Schedule Indicators**

- Schedule Variance: SV(t)
  - Cumulative: SV(t) = ES<sub>cum</sub> AT<sub>cum</sub>
  - Period:  $\Delta SV(t) = \Delta ES_{cum} \Delta AT_{cum}$

Schedule Performance Index: SPI(t)

• Cumulative: **SPI(t) = ES<sub>cum</sub> / AT<sub>cum</sub>** 

• Period:  $\Delta SPI(t) = \Delta ES_{cum} / \Delta AT_{cum}$ 

### **Earned Schedule Indicators**

 What happens to the ES indicators, SV(t) & SPI(t), when the <u>P</u>lanned project <u>D</u>uration (PD) is exceeded (PV = BAC)?

### They Still Work ... Correctly!!

• ES will be  $\leq$  PD, while AT > PD

- SV(t) will be negative (time behind schedule)
- SPI(t) will be < 1.00

### **Reliable Values from Start to Finish !!**

### **Earned Schedule Predictors**

- Long time goal of EVM and project management ... Prediction of total project duration from present schedule status
- Independent Estimate at Completion (time)
  - IEAC(t) = PD / SPI(t)
  - IEAC(t) = AT + (PD ES) / PF(t)

where PF(t) is the Performance Factor (time)

- Analogous to IEAC used to predict final cost
- Independent Estimated Completion Date (IECD)
  IECD = Start Date + IEAC(t)

### **Earned Schedule Key Points**

- ES Indicators constructed to behave in an analogous manner to the EVM Cost Indicators, CV and CPI
- SV(t) and SPI(t)
  - <u>Not</u> constrained by PV calculation reference
  - Provide duration based measures of schedule performance
  - Valid for entire project, including early and late finish
- Facilitates integrated Cost/Schedule Management
  - (Using EVM with ES)

### **Critical Path Study**

© Kym Henderson © Walt Lipke

### **Critical Path Study Outline**

#### The Scheduling Challenge

#### Case Study Project

- The project
- The EVM, Earned Schedule and Network Schedule approach

### Earned Schedule vs Critical Path predictors

### <u>Real</u> Schedule Management with Earned Schedule

Initial experience and observations

### Conclusion and Final Thoughts

### **The Scheduling Challenge**

#### A realistic project schedule is dependent on multiple, often complex factors including accurate:

- Estimation of the tasks required,
- Estimates of the task durations
- Resources required to complete the identified tasks

#### Identification and modeling of dependencies impacting the execution of the project

- Task dependencies (e.g. F-S process flows)
- "Dependent" Milestones (internal and external)
- "Other logic"

### **The Scheduling Challenge**

 From small projects into large projects and programs, scheduling requirements becomes exponentially more complex

#### Integration

- Of schedules between "master" and "subordinate" schedules
- Often across multiple tiers of
  - Activities and
  - Organisations
  - contributing to the overall program of work

# <u>Essential</u> for producing a <u>useful</u> integrated master schedule

### **To further compound schedule complexity**

#### Once an initial schedule baseline has been established progress monitoring <u>inevitably</u> results in changes

- Task and activity durations change because "actual performance" does not conform to plan
- Additional <u>unforeseen</u> activities may need to be added
- Logic changes as a result of corrective actions to contain slippages; and
- Improved understanding of the work being undertaken
- Other "planned changes" (Change Requests) also contribute to schedule modifications over time

#### Wouldn't it be nice ....

#### To be able to explicitly declare "Schedule Reserve" in the project "schedule of record"

Protect committed key <u>milestone</u> delivery dates

#### To have schedule macro level indicators and predictors

- Ideally, derived separately from the network schedule!
- Provides a means for comparison and validation of the measures and predictors provided by the network schedule
- An <u>independent</u> predictor of project duration would be a particularly useful metric
  - "On time" completion of projects usually considered important
- Just like EVM practitioners have for cost ....
  - The potential offered by Earned Schedule

#### **Case Study Project**

#### Commercial sector software development and enhancement project

- Small scale: 10 week Planned Duration
- **Time critical**: Needed to support launch of revenue generating marketing campaign
- Cost budget: 100% labour costs

#### Mixture of:

- 3 tier client server development
  - Mainframe, Middleware, Workstation
- 2 tier client server development
  - Mainframe to Workstation direct

### The EVM and ES Approach

#### Microsoft Project 2002 schedule

- Resource loaded for time phased effort and cost estimation
- Control Account Work Package views developed in the schedule
- Actual Costs captured in SAP time recording system
  - Limited (actual) cost schedule integration
- Contingency (Management Reserve) managed outside the schedule

#### Top level Planned Values cum "copied and pasted" into Excel EVM and ES template

• High level of cost – schedule integration achieved

#### **Baseline Schedule: CAP and WP View** (Excluding Risk)

| Task Name                                       | Baseline Work | Baseline Cost | Duration        | Details   | July     | August    | September           |
|-------------------------------------------------|---------------|---------------|-----------------|-----------|----------|-----------|---------------------|
| Project: ES Example #1 Inital Baseline Schedule | 1.675 hrs     | \$167,857     | 87 days         | Cost      | \$74,084 | \$57,310  |                     |
|                                                 |               |               |                 | Cum. Cost | \$75,852 | \$133,162 | \$133,162           |
| CAP 1 PROJECT MANAGEMENT                        | 297 hrs       | \$38,610      | 44 days         | Cost      | \$14,139 | \$17,680  |                     |
|                                                 | 400 km        | **            | <b>34</b> danse | Cost      | \$15,907 | \$33,587  | \$33,587            |
| CAP 5 BUSINESS REQUIREMENTS                     | 192 nrs       | <b>D</b> 0    | 54 days         | Cum Cost  | 02       | 0.2       | 50                  |
| CAP 7 SOLUTION DESIGN                           | 160 hrs       | \$16 567      | 95 days         | Cost      | \$6.367  | ψŪ        | ψŪ                  |
|                                                 | 100 1113      | \$10,001      | 5.0 uuy 3       | Cum. Cost | \$6,367  | \$6,367   | \$6,367             |
| CAP 8 BUILD & UNIT TEST                         | 720 hrs       | \$77,760      | 30.25 days      | Cost      | \$45,128 | \$13,760  |                     |
|                                                 |               | ,             |                 | Cum. Cost | \$45,128 | \$58,888  | \$58,888            |
| 01 Mainframe Stream 1                           | 192 hrs       | \$24,960      | 19.38 days      | Cost      | \$12,168 | Ļ         | L                   |
|                                                 |               |               |                 | Cum. Cost | \$12,168 | \$12,168  | \$12,168            |
| 02 Mainframe Stream 2                           | 64 hrs        | \$6,400       | 10 days         | Cum Cost  | \$4,240  | 64.240    | \$4.240             |
| 03 Erontend                                     | 104 bre       | \$10.400      | 10 dave         | Cost      | \$7 920  | \$1 440   | Ψ <del>4</del> ,240 |
| us Fromenu                                      | 104 1115      | \$10,400      | 15 uays         | Cum. Cost | \$7,920  | \$9,360   | \$9,360             |
| 04 Connect                                      | 40 hrs        | \$4,000       | 6.25 days       | Cost      | \$4,000  |           |                     |
|                                                 |               |               |                 | Cum. Cost | \$4,000  | \$4,000   | \$4,000             |
| 05 Database                                     | 8 hrs         | \$800         | 1.25 days       | Cost      | \$800    |           |                     |
|                                                 |               |               |                 | Cum. Cost | \$800    | \$800     | \$800               |
| 06 Middle Tier                                  | 208 hrs       | \$20,800      | 25 days         | Cum Cost  | \$12,320 | \$6,880   | 640.000             |
| 07 Perceting                                    | 104 bra       | \$10 400      | 21 E dava       | Cost      | \$12,320 | \$19,200  | \$19,200            |
| Ur Reporting                                    | 104 1115      | \$10,400      | 21.5 uays       | Cum. Cost | \$3,680  | \$9 120   | \$9 120             |
| CAP 9 SYSTEM TEST                               | 104 hrs       | \$13,520      | 29.06 days      | Cost      | \$8,450  | \$5,070   |                     |
|                                                 |               | ••••,•=•      |                 | Cum. Cost | \$8,450  | \$13,520  | \$13,520            |
| CAP 10 UAT                                      | 45 hrs        | \$5,040       | 3.75 days       | Cost      |          | \$5,040   |                     |
|                                                 |               |               |                 | Cum. Cost | _        | \$5,040   | \$5,040             |
| CAP 11 PRODUCTION IMPLEMENTATION                | 96 hrs        | \$10,260      | 11.81 days      | Cost      |          | \$10,260  |                     |
|                                                 |               |               |                 | Cum. Cost |          | \$10,260  | \$10,260            |

#### **Schedule Management**

#### Weekly schedule updates from week 3 focusing on:

- Accurate task level percentage work completion updates
- The project level percentage work completion (cumulative) calculated by Microsoft Project
  - Percentage work complete transferred to the EVM and ES template to derive the progressive Earned Value (cumulative) measures

#### Schedule review focusing on critical path analysis

- Schedule updates occurred as needed with
- Revised estimates of task duration and
- Changes to network schedule logic

particularly when needed to facilitate schedule based corrective action

#### Actual costs entered into the EVM template as they became available (~ weekly)

#### **An Integrated Schedule Analysis Chart** Critical Path, IECD, SPI(t) and SPI(\$) on one page



Earned Schedule In Action PMI OKC July 2007 v1

### **Schedule Analysis**

#### Initial expectation

 The critical path predicted completion date would be more pessimistic than the IECD

#### In fact

- The ES IECD trend line depicted a "late finish" project with improving schedule performance
- The critical path predicted completion dates showed an "early finish project" with deteriorating schedule performance

#### Became the "critical question" in Week 8

- ES IECD improvement trend reversed
- Continued deterioration in the critical path predicted completion dates

### **Schedule Analysis Result**

#### IECD the more credible predictor in <u>this circumstance</u>

- Work was not being accomplished at the rate planned
- No adverse contribution by critical path factors
  - e.g. Externally imposed delays caused by "dependent milestone"

#### Two weeks schedule delay communicated to management

• Very late delay of schedule slippage a very sensitive issue

#### Corrective action was immediately implemented

- Resulted in two weeks progress in one week based on IECD improvement in week 9
- Project substantively delivered to the revised delivery date

### **The IECD vs Critical Path Predictors**

#### Network schedule updates do not usually factor past (critical path) task performance into the future

- Generally concentrate on the <u>current</u> time window
  - Task updates
  - Corrective action to try and contain slippages
- Critical path predicted completion date is not usually calibrated by past actual schedule performance

### The ES IECD

Cannot directly take into account critical path information

#### BUT does calibrate the prediction based on historic schedule performance as reflected in the SPI(t)

### **Further Observations**

#### Much has been written about the consequences of not achieving work at the EVM rate planned

- At very least, incomplete work needs to be rescheduled ...
- Immediate critical vs non critical path implication requires detailed analysis of the network schedule
- <u>Sustained</u> improvement in schedule performance is a difficult challenge
  - SPI(t) remained in the .7 to .8 band for the entire project!
  - In spite of the corrective action and recovery effort
- <u>Any</u> task delayed <u>eventually</u> becomes critical path if not completed!

#### SPI(t) a very useful indicator of schedule performance

Especially later in the project when SPI(\$) resolving to 1.0

### **Questions of Scale**

#### We know that ES is scalable as is EVM

Issues of scale did not arise due to small size of the project

#### Detailed analysis of the ES metrics is required

- The same as EVM for cost
- The "masking" or "washout" effect of negative and positive ES variances at the detailed level can be an issue
- The same as EVM for cost

#### Apply Earned Schedule to the Control Accounts and Work Packages on the critical path

And "near" critical path activities

#### Earned Schedule augments network schedule analysis – it doesn't replace it

Just as EVM doesn't replace a bottom up ETC and EAC

Earned Schedule In Action PMI OKC July 2007 v1

#### **<u>Real</u>** Schedule Management with Earned Schedule

- ES is of considerable benefit in analysing and managing schedule performance
- The "time critical" dichotomy of working to "optimistic" predicted task completions and setting and reporting realistic completion dates was avoided
  - ES metrics provided an <u>independent</u> means of sanity checking the critical path predicted completion date
  - Prior to communicating overall schedule status to management
- ES focused much more attention onto the network schedule than using EVM alone

#### **Final Thoughts**

- ES is expected be of considerable value to the schedule management for large scale projects and programs
  - Exponential increase in the network scheduling complexities which is both
  - Unavoidable and essential on those programs which means
  - The need and benefits of independent techniques to sanity check schedules of such complexity is much greater
- ES is anticipated to become the "bridge" between EVM and the Network Schedule

### **Available Resources**

© Kym Henderson © Walt Lipke

### **Publications**

- 1. "Schedule is Different," <u>The Measurable News</u>, March & Summer 2003 [Walt Lipke]
- "Earned Schedule: A Breakthrough Extension to Earned Value Theory? A Retrospective Analysis of Real Project Data," <u>The Measurable News</u>, Summer 2003 [Kym Henderson]
- "Further Developments in Earned Schedule," <u>The Measurable News</u>, Spring 2004 [Kym Henderson]
- "Connecting Earned Value to the Schedule," <u>The Measurable News</u>, Winter 2004 [Walt Lipke]
- 5. "Earned Schedule in Action," *The Measurable News*, Spring 2005 [Kym Henderson]
- "Not Your Father's Earned Value," <u>Projects A Work</u>, February 2005 [Ray Stratton]

http://sydney.pmichapters-australia.org.au/

Click "Education," then "Presentations and Papers" for .pdf copies http://www.earnedschedule.com

### **Presentations**

- 1. <u>Earned Schedule An Emerging Practice</u>, 16<sup>th</sup> IIPM Conference, November 2004 [Walt Lipke, Kym Henderson]
- 2. <u>Schedule Analysis and Predictive Techniques Using Earned Schedule</u>, 16<sup>th</sup> IIPM Conference, November 2004 [Walt Lipke, Kym Henderson, Eleanor Haupt]
- 3. <u>Earned Schedule an Extension to EVM Theory</u>, EVA-10 Conference (London), May 2005 [Walt Lipke, Kym Henderson]
- 4. <u>Forecasting Project Schedule Completion by Using Earned Value Metrics</u>, EVM Training at Ghent University (Belgium), January 2005 [Stephan Vandevoorde]
- 5. <u>New Concept in Earned Value *Earned Schedule*</u>, PMI Southeast Regional Conference, June 2005 [Robert Handshuh]
- 6. <u>Forecasting Project Schedule Completion by Using Earned Value Metrics</u>, Early Warning Signals Congress (Belgium), June 2005 [Stephan Vandevoorde, Dr. Mario Vanhoucke]

http://sydney.pmichapters-australia.org.au/

Click "Education," then "Presentations and Papers" for .pdf copies http://www.earnedschedule.com

### **Calculator & Analysis Tools**

#### Freely provided upon email request

- Application assistance if needed
- Please respect copyright ©
- Feedback requested
  - Improvement / Enhancement suggestions
  - Your assessment of value to Project Managers
  - Disclosure of application and results (with organization permission and/or anonymously)

### **Contact Information**

| Walt Lipke               |       | Kym Henderson                      |
|--------------------------|-------|------------------------------------|
| <u>waltlipke@cox.net</u> | Email | <u>kym.henderson@froggy.com.au</u> |
| (405) 364-1594           | Phone | 61 414 428 537                     |

### Appendix: ES and Re-Baselining

© Kym Henderson © Walt Lipke

### **ES and Re-Baselining**

#### ES indicators are affected by re-baselining

- Behaviour of SV(t) and SPI(t) is analogous to CV and CPI
  - See examples

#### PMB change affects schedule prediction similarly to cost

 Earned Schedule brings attention to the potential schedule impact of a declared "cost only" change

#### Earned Schedule – Re-Baseline Example Real project data – <u>nominal</u> re-baseline



Earned Schedule In Action PMI OKC July 2007 v1

#### © Kym Henderson © Walt Lipke

#### **Earned Schedule – Re-Baseline Example** *CV*, *SV*(\$) and *SV*(*t*)



Earned Schedule In Action PMI OKC July 2007 v1